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Motivation for Enterprise-wide Optimization 

Process industry: 
Trend to global operations 
Pressure for reducing costs, inventories and ecological footprint 

Major goal: Enterprise-wide Optimization 

Recent research area in Process Systems Engineering:  
Grossmann (2005); Varma, Reklaitis, Blau, Pekny (2007) 

⇒ 

A major challenge: optimization models and solution methods 
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Enterprise-wide Optimization  (EWO) 

EWO involves optimizing the operations of R&D, 
material supply, manufacturing, distribution of a 
company to reduce costs, inventories, ecological 
footprint and to maximize profits, responsiveness .  

Key element: Supply Chain 

Wellhead Pump Trading Transfer of   
Crude  

Refinery 
Processing 

Schedule 
Products 

Transfer of  
Products  

Terminal 
Loading 

Example: petroleum industry 
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I. Integration of  planning, scheduling and control 

Key issues: 

Planning 

Scheduling 

Control 

LP/MILP 

MI(N)LP 

RTO, MPC 

Multiple models 

Multiple  
time scales 
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Source: Tayur, et al. [1999] 

Enterprise Resource 
Planning System 

Materials Requirement 
Planning Systems 

Distributions Requirements 
Planning System 

Transactional IT 

External Data 
Management Systems 

Strategic Optimization 
Modeling System 

Tactical Optimization 
Modeling System 

Production Planning Optimization 
Modeling Systems 

Logistics Optimization 
Modeling System 

Production Scheduling 
Optimization Modeling Systems 

Distributions Scheduling Optimization 
Modeling Systems 

Analytical 
IT 

Demand  
Forecasting and Order 
Management System 

Strategic Analysis 

Long-Term Tactical 
Analysis 

Short-Term Tactical 
Analysis 

Operational 
Analysis 

Scope 

II. Integration of  information and models/solution methods 
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Optimization Modeling Framework: 
Mathematical Programming 
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MINLP: Mixed-integer Nonlinear Programming Problem 

Objective function 

Constraints 
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Linear/Nonlinear Programming (LP/NLP) 

LP Codes: 
CPLEX, XPRESS, GUROBI, XA 

NLP Codes: 
CONOPT Drud (1998) 
IPOPT Waechter & Biegler (2006) 
Knitro Byrd, Nocedal, Waltz (2006) 
MINOS Murtagh, Saunders (1995) 
SNOPT Gill, Murray, Saunders(2006) 
BARON Sahinidis et al. (1998) 
Couenne Belotti, Margot (2008) 
 

Very large-scale models  
Interior-point: solvable polynomial time 

Global 
Optimization 

Large-scale models 
RTO: Marlin, Hrymak (1996) 
Zavala, Biegler (2009) 

Issues: 
Convergence 
Nonconvexities 
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Mixed-integer Linear/Nonlinear Programming (MILP/MINLP) 

MILP Codes: 
CPLEX, XPRESS, GUROBI, XA 

MINLP Codes: 
DICOPT (GAMS) Duran and Grossmann (1986) 
a-ECP Westerlund and Petersson (1996) 
MINOPT Schweiger and Floudas (1998) 
MINLP-BB (AMPL)Fletcher and Leyffer (1999) 
SBB (GAMS) Bussieck (2000) 
Bonmin (COIN-OR) Bonami et al (2006) 
FilMINT Linderoth and Leyffer (2006) 
BARON Sahinidis et al. (1998) 
Couenne Belotti, Margot (2008) 
GLOMIQO Floudas, Meisner (2011) 

Global 
Optimization 

Great Progress over last decade despite NP-hard 
Planning/Scheduling: Lin, Floudas (2004) 
Mendez, Cerdá , Grossmann, Harjunkoski (2006) 
Pochet, Wolsey (2006) 

New codes over last decade 
Leveraging progress in MILP/NLP 

Issues: 
Convergence 
Nonconvexities 
Scalability 
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Modeling systems 

Mathematical Programming 

GAMS (Meeraus et al, 1997) 

AMPL (Fourer et al., 1995) 

AIMSS (Bisschop et al. 2000) 

1. Algebraic modeling systems => pure equation models 

2. Indexing capability => large-scale problems 

3. Automatic differentiation => no derivatives by user 

4. Automatic interface with  
 LP/MILP/NLP/MINLP solvers 
 

Constraint Programming 
OPL (ILOG), CHIP (Cosytech), Eclipse Have greatly facilitated Have greatly facilitated development and 

 implementation of Math Programming models 
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Boolean Variables 

Logic Propositions 

Disjunctions 

Generalized Disjunctive Programming (GDP) 

Continuous Variables 

Raman, Grossmann (1994) 

Codes: 
LOGMIP (GAMS-Vecchietti, Grossmann, 2005) 
EMP (GAMS-Ferris, Meeraus, 2010) 

Framework for deriving schedling models 
Castro, Grossmann (2012) 
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Optimization Under Uncertainty 
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Multistage Stochastic Programming 

Special case: two-stage programming (N=2) 

Birge & Louveaux, 1997; Sahinidis, 2004 

Planning with endogenous uncertainties (e.g. yields, size resevoir, test drug): 
 Goel, Grossmann (2006), Colvin, Maravelias (2009), Gupta, Grossmann (2011) 

Exogeneous uncertainties 
(e.g. demands) 

x1 stage 1 x2 recourse (stage 2) ω 
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Robust Optimization 

Ben-Tal et al., 2009; Bertsimas and Sim (2003)  

Robust scheduling:  
Lin, Janak, Floudas (2004); Li, Ierapetritou (2008) 

Major concern: feasibility over uncertainty set 
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Multiobjective Optimization 

ε-constraint method: Ehrgott (2000) 

Parametric programming: Pistikopoulos, Georgiadis and Dua (2007) 

f1 

f2 

Pareto-optimal 
solutions 
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Decomposition Techniques 

14 

A 

D1 

D3 

D2 

Complicating Constraints 
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Lagrangean decomposition 
Geoffrion (1972) Guinard (2003) 

complicating 
constraints 
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Complicating Variables 
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Benders decomposition 
Benders (1962), Magnanti, Wing (1984) 

 

Widely used in EWO Applied in 2-stage Stochastic Programming 
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Decomposition Techniques (cont.) 
Bi-level decomposition 

Tailor-made Benders  
Iyer, Grossmann (1998) 

Master problem in 
reduced space 

Subproblem fixed 
complicating variables 

UB=Upper bound 

LB=Lower bound 

UB ≅ LB ? 

Add cuts 

Yes 
Stop 

No 
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PITA Project 

Researchers: 
Carnegie Mellon:         Ignacio Grossmann (ChE) 
         Larry Biegler (ChE) 
         Nicola Secomandi (OR) 
                                           John Hooker (OR) 
 
Lehigh University:            Katya Scheinberg (Ind. Eng) 
          Larry Snyder (Ind. Eng.) 
                                            Jeff Linderoth (Ind. Eng.) 
 

Multidisciplinary team: 
Chemical engineers, Operations Research, Industrial Engineering 

    Special  industrial interest group in CAPD: 
   “Enterprise-wide Optimization for Process Industries”  

http://egon.cheme.cmu.edu/ewocp/ 

16 



17 

    Projects and case studies with partner companies: 
   “Enterprise-wide Optimization for Process Industries”  

ABB: Optimal Design of Supply Chain for Electric Motors  
 Contact: Iiro Harjunkoski   Ignacio Grossmann, Analia Rodriguez, Yonheng Jiang 
Air Liquide: Optimal Coordination of Production and Distribution of Industrial Gases 
 Contact: Jean Andre, Jeffrey Arbogast  Ignacio Grossmann, Pablo Marchetti 
Braskem: Optimal production and scheduling of polymer production 
 Contact: Rita Majewski, Wiley Bucey  Ignacio Grossmann, Pablo Marchetti 
Dow:  Optimal Design of Supply Chains under Disruptions  
    Contact: John Wassick   Ignacio Grossmann, Pablo Garcia-Guerrero 
Dow:  Optimal Operation of Reliable Integrated Sites   
    Contact: John Wassick, Anshul Agrawal  Ignacio Grossmann, Bruno Calfa 
Dow:  Financial Risk with Discrete Event Simulation   
    Contact: Bikram Shards, Scott Bury  Nikolaos Sahinidis, Sayit Amaran 
Dow:  Batch Scheduling and Dynamic Optimization     
    Contact: Carlos Villa    Larry Biegler, Yisu Nie 
Ecopetrol: Adaptive Process Control 
 Contact: Sandra Milena Montagut    Erik Ydstie, Masoud Golshan 
ExxonMobil: Global optimization of multiperiod blending networks 
 Contact: Myun-Seok Cheon, Kevin Furman, Nick Sawaya    Ignacio Grossmann, Scott Kolodziej, Francisco Trespalacios 
ExxonMobil: Design and planning of oil and gasfields with fiscal constraints 
 Contact: Bora Tarhan    Ignacio Grossmann, Vijay Gupta 
Mitsubishi: Optimization of power flows 
 Contact: Arvind Raghunathan   Larry Biegler, Ajit Gopalakrishnan  
Petrobras:  Nonlinear Integrated Model for Operational Planning of Multi-Site Refineries  
 Contact: Lincoln Moro    Ignacio Grossmann, Breno Menezes 
P&G:          Models for predicting shelf-life of consumer products  
 Contact: Ben Weinstein    Larry Biegler, George Ostace 
Praxair:  Capacity Planning of Power Intensive Networks with Changing Electricity Prices  
 Contact: Jose Pinto    Ignacio Grossmann, Sumit Mitra 
UNILEVER: Planning and Scheduling of Fast Moving Goods 
 Contact: Hans Hogland   Ignacio Grossmann, Martijn van Elzakker  
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-Linear vs Nonlinear models  

Major Issues 

- The multi-scale optimization challenge 

- The uncertainty challenge  

- Commercial vs. Tailored Software 

- Computational efficiency in large-scale problems 

- Economics vs performance 
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-Linear vs Nonlinear Models 

Example: MILP Supply Chain Design Problem 
2,001 0-1 vars, 37,312 cont vars, 80,699 constraints 

CPLEX 12.2:  
MIP Solution: 5,043,251   (160 nodes, 13734 iterations, ) 
 Relative gap: 0.004263 (< 0.5%) 

 CPU-time: 27 secs!!! 

NLP required for process models 
MINLP required for cyclic scheduling, stochastic 
inventory, MIDO for integration of control 

Most EWO problems formulated as MILP 
 



    Nonlinear CDU Models in  
Refinery Planning Optimization 

Typical Refinery Configuration     (Adapted from Aronofsky, 1978) 

Cat Ref 

Hydrotreatment 

Distillate 
blending 

Gas oil 
blending 

Cat Crack 

CDU 

Crude1, 
… 

Crude2, 
…. 

butane 
Fuel gas 

Prem. 
Gasoline 

Reg. 
Gasoline 

Distillate 

Fuel Oil 

Treated Residuum 

SR Fuel gas 

SR Naphtha 

SR Gasoline 

SR Distillate 

SR GO 

SR Residuum 

Product  
Blending 

20 

Alattas, Palou-Rivera, Grossmann (2010) 
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Nonlinear FI Model  (Fractionating Index) 

 FI Model is crude independent 
 FI values are characteristic of the column 
 FI values are readily calculated and updated from refinery data 

 Avoids more complex, nonlinear modeling equations 
 Generates cut point temperature settings for the CDU 
 Adds few additional equations to the planning model  

LP planning models 
 

Fixed yield model 
Swing cuts model 
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Refinery Planning Models 
 



Planning Model Example Results 

 Comparison of nonlinear fractionation index (FI) with the 
     fixed yield (FY) and swing cut (SC) models 
 Economics:   maximum profit 

 
Model Case1 Case2 Case3 

FI 245 249 247 

SC 195 195 191 

FY 51 62 59 

22 

Crude1 Louisiana Sweet Lightest 

Crude2 Texas Sweet 

Crude3 Louisiana Sour 

Crude4 Texas Sour Heaviest 

FI yields highest profit 
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      Model statistics LP vs NLP 
 FI model larger number of equations and variables 
 Impact on solution time 
 ~30% nonlinear variables 

 

Model Variables Equations 
Nonlinear 
Variables 

CPU 
Time Solver 

2 Crude 
Oil Case 

FY 128 143   0.141 CPLEX SC 138 163   0.188 
FI 1202 1225 348 0.328 CONOPT 

3 Crude 
Oil Case 

FY 159 185   0.250 CPLEX SC 174 215   0.281 
FI 1770 1808 522 0.439 CONOPT 

4 Crude 
Oil Case 

FY 192 231   0.218 CPLEX SC 212 271   0.241 
FI 2340 2395 696 0.860 CONOPT 



- Solution large-scale problems:  
 

Strategy 1: Exploit problem structure (TSP) 

Strategy 2: Decomposition 

Strategy 3: Heuristic methods to obtain  
                    “good feasible solutions” 

24 



Design Supply Chain Stochastic Inventory 
You, Grossmann (2008) 

• Objective: (Minimize Cost) 

 Total cost = DC installation cost + transportation cost + fixed order cost 
  + working inventory cost + safety stock cost 

 

• Major Decisions (Network + Inventory) 
 Network: number of DCs and their locations, assignments between 

              retailers and DCs (single sourcing), shipping amounts 
 Inventory: number of replenishment, reorder point, order quantity,  

                  safety stock 
 

25 Trade-off: Transportation vs inventory costs 
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retailer
supplier

DC

DC – retailer transportation 

Safety Stock 

EOQ 

DC installation cost 

Supplier RetailersDistribution Centers

A
ssignm

ents 

Nonconvex INLP: 

INLP Model Formulation 

Xj Yij 

1. Variables Yij can be relaxed as continuous 
2. Problem reformulated as MINLP 
3. Solved by Lagrangean Decomposition (by distribution centers)  
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Non-convex MINLP 

Avoid unbounded gradient 

• Variables Yij can be relaxed as continuous variables (MINLP) 
 Local or global optimal solution always have all Yij at integer 
 If h=0, it reduces to an “uncapacitated facility location” problem 
 NLP relaxation is very effective (usually return integer solutions) 

Z1j Z2j 

Model Properties 
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• MINLP Heuristic Method 
 Solve the convex relaxation (MILP), using secant for convex envelope 

 Use optimal value of X and Y variables as initial point, solve the reformulated 
problem with an MINLP solver (BARON, Dicopt, etc.) 

Convex 
Relaxation 

Algorithm 1 – MINLP Heuristic 



29 

Supplier RetailersDistribution Centers

• Lagrangean Relaxation (LR) and Decomposition 
 LR: dualizing the single sourcing constraint:  
 Spatial Decomposition: decompose the problem for each potential DC j 
 Implicit constraint: at least one DC should be installed,  

 Use a special case of LR subproblem that  Xj=1 

decompose by DC j 

Algorithm 2 - Lagrangean Relaxation 
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No. 
Retailers β θ 

Lagrangean Relaxation  BARON (global optimum) 

Upper 
Bound 

Lower 
Bound Gap Iter. Time (s) Upper 

Bound 
Lower 
Bound Gap 

88 0.001 0.1 867.55 867.54 0.001 % 21 356.1 867.55 837.68 3.566 % 

88 0.001 0.5 1230.99 1223.46 0.615 % 24 322.54 1295.02* 1165.15 11.146 % 

88 0.005 0.1 2284.06 2280.74 0.146 % 55 840.28 2297.80* 2075.51 10.710 % 

88 0.005 0.5 2918.3 2903.38 0.514 % 51 934.85 3022.67* 2417.06 25.056 % 

150 0.001 0.5 1847.93 1847.25 0.037 % 13 659.1 1847.93 1674.08 10.385 % 

150 0.005 0.1 3689.71 3648.4 1.132 % 53 3061.2 3689.71 3290.18 12.143 % 

 Each instance has the same number of potential DCs as the retailers 

• Suboptimal solution in 3 out of 6 cases with BARON for 10 hour limit. 
     Large optimality gaps 

Computational Results 

150 retailers: MINLP has 150 bin. var., 22,800 cont. var., 22,800 constraints 
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Temporal integration long-term, medium-term  and 
short-term  Bassett, Pekny, Reklaitis (1993), Gupta, Maranas (1999), 
Jackson, Grossmann (2003), Stefansson, Shah, Jenssen (2006), Erdirik-Dogan, 
Grossmann (2006), Maravelias, Sung (2009), Li and Ierapetritou (2009), 
Verderame , Floudas (2010), Salema, Barbosa-Povoa, Novais (2010) 
 
Spatial integration geographically distributed sites  
Gupta, Maranas (2000), Tsiakis, Shah, Pantelides (2001),  
Jackson, Grossmann (2003), Terrazas, Trotter, Grossmann (2011) 

  

Decomposition is key: Benders, Lagrangean, bilevel 

The multi-scale optimization challenge 
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Multi-site planning and scheduling involves different  
temporal and spatial scales 

 
 

Planning 

 
 

Scheduling 

Si
te

 1
 Week 1 Week 2 Week t 

hr 

Week 1 Week 2 Week t 

 
 

Planning 

 
 

Scheduling 

Si
te

 s Week 1 Week 2 Week t 

hr 

Week 1 Week 2 Week t 

Weekly aggregate 
production: 
• Amounts 
• Aggregate sequencing  

model 
    (TSP constraints) 
  

Detailed operation 
• Start and end times 
• Allocation to parallel 

lines  

Different Temporal Scales 

D
ifferent Spatial Scales Weekly aggregate 

production: 

Detailed operation 

Terrazas, Grossmann (2011) 
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MILP Model 

Objective: Maximize Profit 

subject to 

Market constraints 

• Balance of sales vs. shipments to markets 

Production constraints 

• Capacity constraints: Limited capacity at each production sites 

 

• Inventory constraints: Penalties for inventory over or under target 

 

Links across periods: a) Carry over inventories from last month 

             b) Changeover to first product in next month                   

 

• Time Balances: Task should not take longer than available time 

 

• Sequencing Constraints: Traveling Salesman Problem Constraints  

 

Source of complexity of the model: TSP constraints  
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Bilevel decomposition + Lagrangean decomposition 

Market 3

Market 2

Market 1

Production 
Site 1

Production 
Site 2

Production 
Site n-1

Production 
Site n

ths ˆ
sht

Shipments ( sht) leaving production sites

Shipments ( sht) arriving at marketsths ˆ

sht

• Bilevel decomposition 
o Decouples planning from 

scheduling 
o Integrates across temporal 

scale  

• Lagrangean decomposition 
o Decouples the solution of 

each production site 
o Integrates across spatial 

scale 
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Example: 3 sites, 3 products, 3 months 

35 

Site 1 

Site 2 

Market 1 

Market 2 

Market3 

Site 3 

     B 

B C      B Site 1 

Site 2 

Month 1 Month 2 

Site 3 

Month 3 

A 

A 

A A 

Profit: $ 2.576 million 
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Large-scale problems 
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Full space 
Bi-level 
Bi-level + Lagrangean 



 

Integration of operational and  strategic decisions   
for air separation plants 

Liquid Oxygen 

Electricity 

Liquid Nitrogen 

Liquid Argon 

Gas. Oxygen 

Gas. Nitrogen 

LOX storage 

LIN storage 

LAR storage 

Air (free!) 

Pipelines 

Air Separation Plant 

Given: 
 
- Power-intensive plant 
- Products g∈ G (Storable and Nonstorable) 
- Product demands dg

t  for season tT 
- Seasonal electricity prices on  
  an hourly basis et,h, t∈T, h∈ H 
- Upgrade options u∈U of existing equipment 
- New equipment options n∈N 
- Additional storage tanks st∈ST 

Determine: 
 
- Production levels  
- Mode of operation 
- Sales 
- Inventory levels 
 
- Upgrades for equipment 
- Purchase of new equipm. 
- Purchase of new tanks 

for each 
season on an  
hourly basis 

With minimum investment and operating costs 

2 

Demand Side Management  is part of a complex multi-scale design  
and operations problem for power-intensive processes. 

Mitra et al. (2013) 



 

The operational model is based on a  
surrogate representation in the product space 
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Feasible region: projection in product space 
Modes: different ways of operating a plant 
 
Mass balances: differences for products  
with and without inventory 
 
Energy consumption: requires correlation  
with production levels for each mode 

Feasible region 

[1] Ierapetritou, M.G.; Wu, D.; Vin, J.; Sweeny P.; Chigirinskiy M. Cost Minimization in an Energy-Intensive Plant Using Mathematical Programming Approaches.  
Industrial & Engineering Chemistry Research, 41:5262–5277, 2002. 
[2] Karwan, K.; Keblis M. Operations planning with real time pricing of a primary input. Computers & Operations Research, 34:848–867, 2007. 
[3] Reformulation of disjunction with convex hull according to  
Balas, E. Disjunctive Programming and a Hierarchy of Relaxations for Discrete Optimization Problems. SIAM J. Alg. Disc. Meth, 6:466–486, 1985 

Disjunction of feasible regions, reformulate with convex hull: 

op Operational costs 

Feasible region 

Mass balances 

1 

y1
h 

y2
h 

y3
h 



 

Transient plant behavior is captured  
with logic constraints 
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State diagram for transitions:   
    nodes: states (modes)  
        = different ways of operating a plant 
    arcs = allowed transitions  
        (including constraints, e.g. min. up-/downtime) 

Forbidden transitions 

Link between state and transitional variables 

Enforce minimum stay in a mode 

Coupling between transitions 

[*] Derivation of logic constraint using propositional logic according to  
Raman, R.; Grossmann, I.E. Modeling and Computational Techniques for Logic Based Integer Programming. Comp. Chem. Eng., 18:563, 1993. 

Enforce maximum stay in a mode 

Rate of change constraint 

Off Ramp-up 
transition 

Production 
mode 

Minimum down- 
time: 24 hours After 6 hrs 

Minimum uptime: 48 hours 

1 

(12) 

(13) 

(14) 

(15) 

(18) 

(17) 

Logic constraints for transitions 
between different modes 

(23) Constraints for transitions within one mode 
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Incorporating design decisions: seasonal variations  
drive the development of a seasonal model  

Year 1, spring:  
Investment decisions 

 
 
 
 

Spring 

Mo Tu We Th Fr Sa Su 
 
 
 
 

Summer 

 
 
 
 

Fall 

 
 
 
 

Winter 

Mo Tu Su … Mo Tu Su … Mo Tu Su … 

Year 2, spring:  
Investment decisions 

… 

• Horizon: 5-15 years, each year has 4 periods (spring, summer, fall, winter) 
 

• Each period is represented by one week on an hourly basis 
 

• Varying inputs: electricity prices, demand data (here: highly utilized plant), configuration 
slates 
 

• Each representative week is repeated in a cyclic manner (13 weeks reduced to 1 week) 
                                                                                                               (8736 hr vs. 672 hr) 

 

• Connection between periods: Only through investment (design) decisions 
 

• Design decisions are modeled by discrete equipment sizes 

Year 1, summer:  
Investment decisions 

Year 1, fall:  
Investment decisions 

Year 1, winter:  
Investment decisions 



 

Multi-scale representation is accomplished by linking 
operational problem with strategic design decisions 
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Existing equipment 
 
 Option A Option B 

New equipment 

… 

Objective: minimize investment + operational costs 

Fig. 1: Feasible region 

Fig. 2: State graph 

Logic constraints for equipment upgrades 
(polyhedral representation of mode changes) 

Logic constraints for additional equipment 
(additional mode(s) are added to the state graph) 

Constraints for additional storage 
(manipulation of upper bound for inventory) 
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Air Separation Plant 

Retrofitting an air separation plant 

LIN 
1.Tank 

LIN 
2.Tank? 

LOX 
1.Tank 

LOX 
2.Tank? 

LAR 
1.Tank 

LAR 
2.Tank? 

Liquid Oxygen 

Liquid Nitrogen 

Liquid Argon 

Gaseous Oxygen 

Gaseous Nitrogen 

Existing equipment 
 
 
 
 
 

Option A 

Option B ? 
(upgrade) 

Additional Equipment 

Spring - Investment decisions: 
(yes/no) 
- Option B for existing equipment?  
- Additional equipment?  
- Additional Tanks? 

 
 

Spring 

Mo Tu We Th Fr Sa Su 
 
 

Summer 

 
 

Fall 

 
 

Winter 

Mo Tu Su … Mo Tu Su … Mo Tu Su … 

Fall  - Investment decisions: (yes/no) 
- Option B for existing equipment?  
- Additional equipment?  
- Additional Tanks? 

Superstructure 

Time 

Pipelines 
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Case study: Integrating operational and  
strategic decision-making. 

Off TransOffOn1 
Existing equipment 

 
 

After 4hrs 

Immediate [1] 

New equipment TransOffOn2 

TransOn1On2 

Immediate 

After 4hrs 

Immediate [2] 

Immediate [1] 

Immediate 

Option A Option B 

New equipment TransOffOn2 

TransOn1On2 

Upgrade 
equipment 

Additional 
equipment 

Existing equipment 
 
 
 
 
 

Option A 

Option B ? 
(upgrade) 

New equipment New equipment 

2 

Fig. 1: Flowsheet superstructure Fig. 2: State graph superstructure 

• The resulting MILP has 191,861 constraints and 161,293 variables (18,826 binary.) 
 

• Solution time: 38.5 minutes (GAMS 23.6.2, GUROBI 4.0.0, Intel i7 (2.93GHz) with 4GB RAM  

Ex. 
Tanks 

New 
Tanks 



 

Investments increase flexibility help realizing savings. 
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1-tank capacity LN2-w/o investment

Remarks on case study 
 

• Annualized costs: 
$5,700k/yr 

• Annualized savings: 
$400k/yr 
 

• Buy new liquefier  
in the first time period 
(annualized investment 
costs: $300k/a) 

• Buy additional LN2 
storage tank ($25k/a) 

• Don’t upgrade existing 
equipment ($200k/a) 
 

• Take-away message on 
operational level: 
Reduce production 
when prices are high 
and build up LN2 when 
prices are low. 

• Utilization of existing 
equipment: 97%. 

Power consumption 

LN2 inventory profile 

Source: CAPD analysis; Mitra, S., I.E. Grossmann, J.M. Pinto and Nikhil Arora, "Integration of strategic and operational decision- making  
for continuous power-intensive processes”, submitted to ESCAPE, London, Juni 2012 
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- The uncertainty challenge:  
 

Short term uncertainties: robust optimization 
   Computation time comparable to deterministic models 
 
Long term uncertainties: stochastic programming 
Computation time one to two orders of magnitude larger 
than deterministic models 
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• Objective: Minimize Cost 

~ 100 facilities 
~ 1,000 customers 
~ 25,000 shipping 
         links/modes 

Global Sourcing Project with 
Uncertainties 

• Given 
Initial inventory 
Inventory holding cost and throughput cost 
Transport times of all the transport links 
Uncertain production reliability and demands 

• Determine 
Inventory levels, transportation and sale amounts 

You, Wassick, Grossmann (2009) 

Two-stage stochastic MILP model 
1000 scenarios (Monte Carlo sampling) 
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MILP Problem Size 

Case Study 1 Deterministic 
Model 

Stochastic 
Programming 

Model 
1,000 scenarios 

# of Constraints 62,187 52,684,187 
# of Cont. Var. 89,014 75,356,014 
# of Disc. Var. 7 7 

 Impossible to solve directly 
 takes 5 days by using standard L-shaped Benders 
 only 20 hours with multi-cut version Benders 
30 min if using 50 parallel CPUs and multi-cut version 
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Simulation Results to Assess Benefits Stochastic Model 

6

7

8

9

10

11

12

1 10 19 28 37 46 55 64 73 82 91 100
Iterations

C
os

t (
$M

M
)

Stochastic Soln
Deterministic SolnAverage 

5.70±0.03% 
cost saving 

Stochastic Planner vs Deterministic Planner 
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Carnegie Mellon  

 
 
Decisions: 

 Number and capacity of TLP/FPSO facilities 
 Installation schedule for facilities 
 Number of sub-sea/TLP wells to drill 
 Oil production profile over time 

 

Reservoirs wells 

facilities 

Offshore oilfield having several reservoirs under uncertainty 
Maximize the expected net present value (ENPV) of the project 

 

Tarhan, Grossmann (2010) 

Optimal Development Planning under Uncertainty 

    Uncertainty: 
Initial productivity per well 
Size of reservoirs                  
Water breakthrough time for reservoirs 

TLP FPSO 
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Carnegie Mellon  

Tank Cumulative Oil (MBO)
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Unconstrained  
Maximum Oil Production 

Water Rate 

Initial oil 
production Assumption: All wells in the same reservoir are identical. 

Size of the reservoir 

Uncertainty is represented by discrete distributions functions 

Non-linear Reservoir Model 
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Carnegie Mellon  

Decision Dependent Scenario Trees 
(Endogeneous uncertainties) 

Scenario tree  
Not unique: Depends on timing of investment at uncertain fields 

Central to defining a Stochastic Programming Model 

Invest in F in year 1 
  

H 

Invest in F 

Size of F:   M L 

Assumption: Uncertainty in a field resolved as soon as WP installed at field 

Invest in F in year 5 

H Size of F:   L 

Invest in F 

M 
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Carnegie Mellon  

1 2 3 4 

ξ2=1 
p=0.5 

ξ2=2 
p=0.5 

ξ2=1 
p=0.5 

ξ2=2 
p=0.5 

ξ1=1 
p=0.5 

ξ1=2 
p=0.5 

t=1 

t=2 

t=3 

1 2 3 4 

 ξ1=1 
 p=0.25 

 ξ1=2 
 p=0.25 

 ξ1=2 
 p=0.25 

 ξ2=2 
 p=1.00 

 ξ2=1 
 p=1.00 
 

ξ1=1 
p=0.25 

ξ2=2 
p=0.250 

ξ2=1 
p=0.25 

t=1 

t=2 

t=3 

Alternative and equivalent scenario tree structure (Ruszczynski, 1997):   

scenario  
tree 

Stochastic Programming 
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Carnegie Mellon  

1 2 3 4 

ξ2=1 
p=0.5 

ξ2=2 
p=0.5 

ξ2=1 
p=0.5 

ξ2=2 
p=0.5 

ξ1=1 
p=0.5 

ξ1=2 
p=0.5 

t=1 

t=2 

t=3 

1 2 3 4 

 ξ1=1 
 p=0.25 

 ξ1=2 
 p=0.25 

 ξ1=2 
 p=0.25 

 ξ2=2 
 p=0.25 

 ξ2=1 
 p=0.25 
 

ξ1=1 
p=0.25 

ξ2=2 
p=0.25 

ξ2=1 
p=0.25 

t=1 

t=2 

t=3 

Each scenario is represented by a set of unique nodes   

Stochastic Programming 



54 

Carnegie Mellon  

1 2 3 4 

ξ2=1 
p=0.5 

ξ2=2 
p=0.5 

ξ2=1 
p=0.5 

ξ2=2 
p=0.5 

ξ1=1 
p=0.5 

ξ1=2 
p=0.5 

t=1 

t=2 

t=3 

 ξ1=1 
 p=0.25 

 ξ1=2 
 p=0.25 

 ξ1=2 
 p=0.25 

 ξ2=2 
 p=0.25 

 ξ2=1 
 p=0.25 
 

ξ1=1 
p=0.25 

ξ2=2 
p=0.25 

ξ2=1 
p=0.25 

1 2 3 4 

t=1 

t=2 

t=3 

≡Nodes have same amount of information Nodes are indistinguishable 

Non-anticipativity constraints 

Stochastic Programming 
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Carnegie Mellon  

t=1 

t=2 

t=3 

1 2 3 4 
t=4 

t=1 

t=2 

t=3 

1 2 3 4 

t=4 

1 2 3 4 

1 2 3 4 

Representation of Decision-Dependence Using Scenario Tree 
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Carnegie Mellon  

Every 
scenario, 

time period 

Problem size MINLP increases 
exponentially with number of time periods 

and scenarios 

Decomposition algorithm: 
Lagrangean relaxation & 
Branch and Bound 

Every pair 
scenarios, 

time period 

Multi-stage Stochastic Nonconvex MINLP 

Maximize.. Probability weighted average of NPV over uncertainty scenarios 
  subject to 

 Equations about economics of the model 
 Surface constraints 
 Non-linear equations related to reservoir performance 
 Logic constraints relating decisions 

if there is a TLP available, a TLP well can be drilled 

Non-anticipativity constraints 
 Non-anticipativity prevents a decision being taken now from  
     using information that will only become available in the future  
        Disjunctions (conditional constraints) 
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Carnegie Mellon  

Formulation of Lagrangean dual 

Relaxation 
• Relax disjunctions, logic 

constraints 
• Penalty for equality 

constraints 
 

Non-anticipativity constraints 
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Carnegie Mellon  

Uncertain Parameters 
(Discrete Values)  

Scenarios 

1 2 3 4 5 6 7 8 
Initial Productivity per well (kbd) 10 10 20 20 10 10 20 20 

Reservoir Size (Mbbl) 300 300 300 300 1500 1500 1500 1500 

Water Breakthrough Time Parameter 5 2 5 2 5 2 5 2 

Optimize the planning decisions for an oilfield having single reservoir for 10 years. 
Decisions: 

 Number, capacity and installation schedule of FPSO/TLP facilities 
 Number and drilling schedule of sub-sea/TLP wells 
 Oil production profile over time 

Construction 
Lead Time 

(years) 

Wells Facilities 

TLP Sub-sea TLP  Small FPSO Large FPSO 

1 1 1 2 4 

One Reservoir Example 
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Carnegie Mellon  

RS: Reservoir size 
IP: Initial Productivity 
BP: Breakthrough Parameter 

E[NPV] = $4.92 x 109 

Solution proposes building 2 small FPSO’s in the first year and then add  
new facilities / drill wells (recourse action) depending on the positive or negative outcomes. 

year  1 

Build 2 small FPSO’s 
Drill 12 sub-sea wells 

year 2 
12 subsea wells 

Low RS 
Low IP 

High RS 
High IP 

High RS 
Low IP 

Low RS 
High IP 

4 small FPSO’s, 
5 TLP’s 
12 subsea wells 

5 small FPSO’s, 
3 TLP’s 

2 small FPSO’s, 
2 TLP’s 
3 subsea wells 

Mean RS 
Mean IP 

Multistage Stochastic Programming Approach 
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Carnegie Mellon  

RS: Reservoir size 
IP: Initial Productivity 
BP: Breakthrough Parameter 

E[NPV] = $4.92 x 109 

Solution proposes building 2 small FPSO’s in the first year and then add  
new facilities / drill wells (recourse action) depending on the positive or negative outcomes. 

year  1 

year 2 

Build 2 small FPSO’s 
Drill 12 sub-sea wells 

12 subsea wells 

Low RS 
Low IP 

High RS 
High IP 

High RS 
Low IP 

Low RS 
High IP 

4 small FPSO’s, 
5 TLP’s 
12 subsea wells 

5 small FPSO’s, 
3 TLP’s 

2 small FPSO’s, 
2 TLP’s 
3 subsea wells 

Mean RS 
Mean IP 

8 9 1 2 6 7 3 4 

year 3 

year 4 
High BP Low BP 

6 subsea wells, 
18 TLP wells 

High BP Low BP High BP Low BP High BP Low BP 

5 

12 subsea wells, 
30 TLP wells 

12 subsea wells 
6 subsea wells 6 subsea wells,  

12 TLP wells 

Mean BP 

Multistage Stochastic Programming Approach 
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Carnegie Mellon  
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Deterministic Mean Value = $4.38 x 109 

Multistage Stoch Progr = $4.92 x 109 => 12% higher and  more robust 

Computation: Algorithm 1: 120 hrs; Algorithm 2: 5.2 hrs 
Nonconvex  MINLP: 1400 discrete vars, 970 cont vars, 8090 Constraints 

Distribution of Net Present Value 
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Economics vs. performance? 

Multiobjective Optimization Approach 

Economics vs Environmental: 
Guillen-Gozalbez, Grossmann (2010) 
Pinto-Varela, Barbosa-Póvoa and A.Q. Novais (2011)  
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Possible Plant Site 
Supplier Location 

Distribution Center 
Customer Location 

Optimal Design of Responsive Process Supply Chains 
Objective: design supply chain polystyrene 
resisns under responsive and economic criteria 
 

You, Grossmann (2008) 



II

III

SPS - 3

EPS - 1

SPS - 2

SPS - 1

EPS - 2
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Ethylene

Benzene

Styrene

Production Network of Polystyrene Resins 

Source: Data Courtesy Nova Chemical Inc.   http://www.novachem.com/ 

Three types of plants: 

Basic Production Network 

Single Product 

Multi Product 

Multi Product 

Plant I:    Ethylene + Benzene          Styrene (1 products) 

Plant II:   Styrene          Solid Polystyrene (SPS)  (3 products) 

Plant III:  Styrene          Expandable Polystyrene (EPS) (2 products) 

Example 
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Potential Network Superstructure 
Example 



• A supply chain network = ∑Linear supply chains 
 Assume information transfer instantaneously 

Model & Algorithm 

Lead Time for A Linear Supply Chain 

 

 

Information 

 

 

 

 

Suppliers 

 

Plants Distribution Centers Customers 

Supplier ls Plant i1 site k1 Plant i3 site k3 Customer ldDistribution Center m

 

Plant i2 site k2

 

 

 

Responsiveness - Lead Time 



Lead Time under Demand Uncertainty 

Model & Algorithm 

Inventory (Safety Stock) 

Production Lead Time (LP) Delivery Lead Time (LD)

Supplier ls Plant i0 site k0

…
Plant in site kn Customer ldDistribution Center m

  Transporation Transporation TransporationTransporation
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• Objective Function: 
 Max: Net Present Value   

 Min: Expected Lead time  

• Constraints: 
 Network structure constraints 

Suppliers – plant sites Relationship 
Plant sites – Distribution Center 
Input and output relationship of  a plant 
Distribution Center – Customers  
Cost constraint 

Bi-criterion 

Choose Discrete (0-1), continuous variables 

 Cyclic scheduling constraints 
Assignment constraint 
Sequence constraint 
Demand constraint 
Production constraint 
Cost constraint 

 Probabilistic constraints 
Chance constraint for stock out 
 (reformulations) 

Bi-criterion Multiperiod MINLP Formulation 

d Md L d U

Safety Stock

Target Demand

Model & Algorithm 

 Operation planning constraints 
Production constraint 
Capacity constraint 
Mass balance constraint 
Demand constraint 
Upper bound constraint 
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Possible Plant Site
Supplier Location

Distribution Center
Customer Location

Possible Plant Site
Supplier Location

Distribution Center
Customer Location

Possible Plant Site
Supplier Location

Distribution Center
Customer Location

Case Study 

Example 

• Problem Size: 
 # of Discrete Variables: 215 
 # of Continuous Variables: 8126 
 # of Constraints: 14617 

• Solution Time: 
 Solver: GAMS/BARON 
 Direct Solution: > 2 weeks 
 Proposed Algorithm: ~ 4 hours 
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More Responsive 
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Other Issues / Future Directions 

2. Optimization of entire supply chains 

1. Integration of control with planning and scheduling  

3. Design and Operation of Sustainable Supply Chains 

Bhatia, Biegler (1996), Perea, Ydstie, Grossmann (2003), Flores, Grossmann (2006),   
Prata, Oldenburg, Kroll, Marquardt (2008) , Harjunkoski, Nystrom, Horch (2009) 

Challenge:  Effective solution of Mixed-Integer Dynamic Optimization (MIDO) 

Challenges:  
- Combining different models (eg maritime and vehicle transportation, pipelines) 
     Cafaro, Cerda (2004), Relvas, Matos, Barbosa-Póvoa, Fialho, Pinheiro (2006) 
- Advanced financial models 
      Van den Heever, Grossmann (2000), Guillén, Badell, Espuña, Puigjaner (2006),  

 

Challenges: 
Biofuels, Energy, Environmental 
Elia, Baliban, Floudas (2011) Guillén-Gosálbez (2011), You, Tao, Graziano, Snyder (2011) 
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Conclusions 

1. Enterprise-wide Optimization area of great industrial interest 
 Great economic impact for effectively managing complex supply chains 

3. Computational challenges lie in: 
 a) Large-scale optimization models (decomposition, advanced computing ) 
 b) Handling uncertainty (stochastic programming)  

2. Key components: Planning and Scheduling 
 Modeling challenge: 
              Multi-scale modeling (temporal and spatial integration ) 
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