
1 

Review of  
Mixed-Integer Nonlinear Programming and  

Generalized Disjunctive Programs 
Ignacio Grossmann 

Center for Advanced Process Decision-making 
Department of Chemical Engineering 

Carnegie Mellon University 
Pittsburgh, PA 15213, U.S.A 

Zhejiang University 
Hangzhou 

January 17, 2014 



2 

2. Overview GDP and relaxations for nonlinear 
       problems (big-M and hull relaxation) 

3.   Convex nonlinear GDP: hierarchy of relaxations 
             Concept of basic steps 
             Equivalent NLP formulation 
4.    Application to global Optimization of nonconvex GDP 
             Bilinear, concave and linear fractional functions 

Outline 

5.    Algorithm reformulating GDP to MI(N)LP using basic steps 
             Convex linear/nonlinear GDP 

1.   Review of MINLP methods 
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MINLP 

 

 f(x,y) and g(x,y) - assumed to be convex and bounded over X.  
 f(x,y) and g(x,y) commonly linear in y 
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• Mixed-Integer Nonlinear Programming  

Objective Function 

Inequality Constraints 
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Branch and Bound method (BB)  
Ravindran and Gupta (1985) Leyffer and Fletcher (2001)  
Branch and cut: Stubbs and Mehrotra (1999) 

Generalized Benders Decomposition (GBD)  

      Geoffrion (1972) 
Outer-Approximation (OA)  
Duran & Grossmann (1986), Yuan et al. (1988), Fletcher & Leyffer (1994) 

LP/NLP based Branch and Bound  
      Quesada and Grossmann (1992) 

Extended Cutting Plane (ECP) 
 Westerlund and Pettersson (1995) 

Solution Algorithms 
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Basic NLP subproblems   

  

a) NLP  Relaxation Lower bound 
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b) NLP   Fixed yk Upper bound 
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c)  Feasibility subproblem for fixed yk. 
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Cutting plane MILP master  
(Duran and Grossmann, 1986) 
 

Based on solution of K subproblems (xk, yk)  k=1,...K 
 
 Lower Bound 
M-MIP 
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Notes:  

a) Point (xk, yk)  k=1,...K  normally from NLP2 

b) Linearizations accumulated as iterations K increase 

c) Non-decreasing sequence lower bounds 
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Branch and Bound   

     NLP1: 
  

min ZLB
k = f(x,y)  

  Tree Enumeration      s.t. g j(x,y) < 0 j∈J   

 

       

   x∈X , y∈YR
yi < αi

k i∈IFL
k

yi > β i
k i∈IFU

k

 
 
Successive solution of NLP1 subproblems 
 
Advantage:  
Tight formulation may require one NLP1 (IFL=IFU=∅) 

Disadvantage: 
Potentially many NLP subproblems 
 
Convergence global optimum: 
Uniqueness solution NLP1 (sufficient condition) 

 Less stringent than other methods 
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Outer-Approximation 
Alternate solution of NLP and MIP problems: 

  

NLP2

M-MIP

 
 
NLP2:     min ZU

k = f(x,yk)  

    s.t. g j( x,yk) < 0 j∈J   

   x∈X  
 
 

M-MIP:    min ZL
K = α  

 

   
s.t α > f xk,yk + ∇f xk,yk T x–xk

y–yk

g xk,yk + ∇gj xk,yk T x–xk

y–yk < 0 j∈Jk
k=1..K  

     x∈ X, y∈Y , α∈ R1  
 

Property. Trivially converges in one iteration if f(x,y) and g(    

- If infeasible NLP solution of feasibility NLP-F required  to  
 guarantee convergence. 
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Generalized Benders Decomposition 
Benders (1962), Geoffrion (1972) 

Particular case of Outer-Approximation as applied to (P1) 

 

1. Consider Outer-Approximation at (xk, yk) 
   

α > f xk,yk + ∇f xk,yk T x–xk

y–yk

g xk,yk + ∇gj xk,yk T x–xk

y–yk < 0 j∈Jk

  (1) 

 
2. Obtain linear combination of (1) using Karush-Kuhn-
 Tucker multipliers µk  and eliminating x  variables  
 

 

   
α > f xk,yk + ∇yf xk,yk T y–yk

        (2) 

   

   
+ µk T g xk,yk + ∇yg xk,yk T y–yk

 

 Lagrangian cut 

Remark. Cut for infeasible subproblems can be derived in   

 a similar way.  

 

   
λk T g xk,yk + ∇yg xk,yk T y–yk < 0
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Generalized Benders Decomposition 
Alternate solution of NLP and MIP problems: 

 

  

NLP2

M-GBD

 
 
 
NLP2:     min ZU

k = f(x,yk)  

 
   s.t. g j( x,yk) < 0 j∈J

  
   x∈X  
 
 
 
M-GBD:    min Z L

K = α  

 
   s.t. α > f xk,yk + ∇ y f xk,yk T y–yk

  

 
   + µk T g xk,yk + ∇ yg xk,yk T y–yk k∈KFS   

 
   λk T g xk,yk + ∇ yg xk,yk T y–yk < 0 k∈KIS  

     y∈Y , α∈ R1
 

 

Property 1.  If problem (P1) has zero integrality gap, 
Generalized Benders Decomposition converges in one 
iteration when optimal (xk, yk) are found. 

 => Also applies to Outer-Approximation 
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Extended Cutting Plane 
Westerlund and Pettersson (1992) 

 

    

M-MIP'

Evaluate

 

Add linearization most violated constraint to M-MIP 

   

       
J k = { j j ∈ arg { max j ∈ J 

g j ( x k , y k ) }} 
 

Remarks.  

- Can also add full set of linearizations for M-MIP 

- Successive M-MIP's produce non-decreasing sequence 
 lower bounds 

- Simultaneously optimize xk, yk with M-MIP 

 = > Convergence may be slow  
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No NLP ! 

(1995) 
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LP/NLP Based Branch and Bound 
Quesada and Grossmann (1992) 
 

Integrate NLP and M-MIP problems 

     
NLP2M-MIP

 

  

   

M-MIP

LP1

LP2
LP3

LP4 LP5 = > Integer

Solve NLP and update
 bounds open nodes  

 

Remark.  

Fewer number branch and bound nodes for LP subproblems   

May increase number of NLP subproblems 

(Branch & Cut) 
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Numerical Example 

   min Z = y1 + 1.5y2 + 0.5y3 + x12   + x22 
   s.t. (x1 - 2) 2 - x2 < 0 
    x1 - 2y 1 > 0 
    x1 - x2 - 4(1-y2) < 0 
    x1 - (1 - y1) > 0 
   x2 - y2 > 0      (MIP-EX) 
   x1 + x2 > 3y3 
    y1 + y2 + y3 > 1 
    0 < x1 < 4,   0 < x2 < 4 
    y1, y2, y3 = 0, 1 
 
Optimum solution: y1=0, y2 = 1, y3 = 0, x1 = 1, x2 = 1, Z = 3.5.   
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Example: Process Network with Fixed Charges 

• Duran and Grossmann (1986) 
 Network superstructure 
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Example  (Duran and Grossmann, 1986) 

Algebraic MINLP:   linear in y, convex in x 

8 0-1 variables, 25 continuous, 31 constraints (5 nonlinear) 

       NLP  MIP 

Branch and Bound (F-L)  20    - 

 

Outer-Approximation:   3   3 

Generalized-Benders  10   10 

Extended Cutting Plane  -   15 

 

LP/NLP based    3  7 LP's vs 13 LP's OA   A 
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Effects of Nonconvexities 
1. NLP supbroblems may have local optima 
2. MILP master may cut-off global optimum 
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Multiple minima 

0 1 
y 

x 
Global optimum 

Cut off! 

Handling of Nonconvexities 
1. Rigorous approach (global optimization): 
       Replace nonconvex terms by underestimtors/convex envelopes 
       Solve convex MINLP within spatial branch and bound 
 

2. Heuristic approach: 
 Add slacks to linearizations 
 Search until no imprvement in NLP 
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Handling nonlinear equations 
h(x,y) = 0 

1. In branch and bound no special provision-simply add to NLPs 
 
2. In GBD no special provision- cancels in Lagrangian cut 

 
3. In OA equality relaxation 

 
 
 
 
 
 
 
                Lower bounds may not be valid 
    Rigorous if eqtn relaxes as h(x,y) ≤ 0  h(x,y) is convex 
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MIP-Master Augmented Penalty 
Viswanathan and Grossmann, 1990 

Slacks:  pk,  qk   with weights wk 
 

 

   
min ZK = α + w p

k pk + wq
kqkΣ
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            (M-APER) 
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g xk,yk + ∇g xk,yk
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k=1..K
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x∈ X , y∈Y , α∈ R1 , pk, qk > 0  

 
 
If convex MINLP then slacks take value of zero  
 => reduces to OA/ER 

Basis DICOPT (nonconvex version) 

1. Solve relaxed MINLP 

2. Iterate between MIP-APER and NLP subproblem 
 until no improvement in NLP 
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MINLP:   
Algorithms 
Branch and Bound (BB) Leyffer (2001), Bussieck, Drud (2003)  
Generalized Benders Decomposition (GBD) Geoffrion (1972) 
Outer-Approximation (OA) Duran and Grossmann (1986) 
Extended Cutting Plane(ECP) Westerlund and Pettersson (1992) 
  
Codes: 
SBB GAMS simple B&B 
MINLP-BB (AMPL)Fletcher and Leyffer (1999) 
 

Bonmin (COIN-OR) Bonami et al (2006) 
FilMINT Linderoth and Leyffer (2006) 
 

DICOPT (GAMS) Viswanathan and Grossman (1990) 
AOA (AIMSS) 
 

α−ECP Westerlund and Peterssson (1996) 
MINOPT Schweiger and Floudas (1998) 
 
BARON Sahinidis et al. (1998)    Global 
Couenne Belotti & Margot (2008)   Global 
SCIP ZIB (2012)   Global 
GLOMIQO Floudas and Meisner (2011) 
 

Mixed-integer Nonlinear Programming 

Note: MIQPs can be solved with CPLEX 
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http://www.minlp.org 
 

http://www.minlp.org/
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Generalized Disjunctive Programming (GDP) 
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• Raman and Grossmann (1994)   (Extension Balas, 1979) 

• Motivation: Facilitate modeling discrete/continuous problems 

 

 

 

 

 

 

 

 

Objective Function 

Common Constraints 

Continuous Variables 

Boolean Variables 

Logic Propositions 

OR operator 

Disjunction 

Fixed Charges 

Constraints 

Properties: a) Every GDP can be transformed into an MINLP 
                    b) Every bounded MINLP can be transformed into GDP 
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Generalized Disjunctive Programming (GDP) 
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Objective Function 

Common Constraints 

Disjunction 

Fixed Charges 

Continuous Variables 

Boolean Variables 

Logic Propositions 

Constraints 

Relaxation of GDP? 
Lee, Grossmann (2000) 
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Big-M MINLP (BM)  

• MINLP reformulation of GDP 
 
 
 
 
 
 
 
 
 

 

         min   ( )

              . .       ( ) 0 
    ( ) (1 )  , ,

                1,  

                       
               0, {0,1}

k

k

jk jk
k K j J

jk jk jk k

jk
j J

jk

Z f x

s t r x
g x M j J k K 

k K

A a 
x

γ λ

λ

λ

λ
λ

∈ ∈

∈

= +

≤
≤ − ∈ ∈

= ∈

≤
≥ ∈

∑ ∑

∑
Big-M Parameter 

Logic constraints 
Williams (1990) 

NLP Relaxation 0 1jkλ≤ ≤ =>  Lower bound to optimum of GDP 
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Hull Relaxation Formulation 

• Consider Disjunction k ∈ K 
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Hull relaxation: intersection of convex hull of each disjunction 

 Theorem: Convex Hull of Disjunction k  (Lee, Grossmann, 2000) 
 Disaggregated variables ν jk 
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)/(),( λλλ vgvh =

Remarks 

 
  If g(x) is a bounded convex function,  

           is a bounded convex function  Hiriart-Urruty and Lemaréchal (1993) ),( λvh

  1. Perspective function 

0)0,( =νh for bounded g(x) 

0, ( )( (0)) (0) 0 0jk jk jkif g gλ ε ε= ⇒ − = ≤

1, ((1)( ( / (1)) (0)(0) (1) ( / (1)) 0jk jk jk jk jk jkif g g gλ ν ε ν= ⇒ − = ≤

a. Exact approximation of the original constraints as ε → 0. 

c. The LHS of the new constraint is convex. 

b. The constraints are exact at λjk = 0 and at λjk = 1 regardless of value of ε. 

2. Replace  by: ( / ) 0jk jk jk jkgλ ν λ ≤ 0 jk jkUν λ≤ ≤where 

((1 ) )( ( / ((1 ) ))) (0)(1 ) 0jk jk jk jk jk jkg gε λ ε ν ε λ ε ε λ− + − + − − ≤

Furman, Sawaya & Grossmann (2009) 
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Hull Relaxation Problem (HRP)  

 Property: The NLP (HRP) yields a lower bound to optimum of (GDP). 

Logic constraints 
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Strength Lower Bounds  
 Theorem: The relaxation of (HRP) yields a lower bound that is greater than or 

equal to the lower bound that is obtained from the relaxation of problem (BM 
 
 
 
 
 
 
 
 
 
 

Grossmann, Lee (2003) 

Big-M relaxation Convex hull relaxation 

Convex Hull of a set of disjunctions is smallest convex set that includes set of  disjunctions.  
Projected relaxation of (CH) onto the space of  (BM) is as tight or tighter than that of (BM) 
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Logic based methods 

Branch and bound 
(Lee & Grossmann, 2000) 

Decomposition 
Outer-Approximation 
Generalized Benders 

(Turkay & Grossmann, 1997)  

Methods Generalized Disjunctive Programming 

Hull  
relaxation 

Big-M 
  

Reformulation MINLP 
Branch and Bound 

Outer-Approximation 
Generalized Benders 

Extended Cutting Plane  

GDP 
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Process Network with Fixed Charges 
• Türkay and Grossmann (1997) 
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8 Boolean variables,  25  continuous,  31  constraints ( 8 disjunctions,5 nonlinear) 
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 Minimum Cost: $ 68.01M/year 
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x10 

x17 
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MINLP- Branch and Bound Method 
ZL = 62.48 

λ = [0.31,0.69,0.03,1.0,1,0,1] 

ZU = 68.01 = Z* 
λ = [0,1,0,0,1.0,1,0,1] 

Optimal Solution 

ZU = 71.79 
λ = [0,1,1,1.0,1,0,1] 

Feasible Solution 

ZL = 75.01 > ZU 
λ = [1,0,0.022,1.0,1,0,1] 

ZL = 65.92 
λ = [0,1,0.022,1.0,1,0,1] 

0 

3 2 

4 1 

Fix λ2 = 1 

Fix λ3 = 1 Fix λ3 = 0 

Fix λ2 = 0 

Stop 

 5 nodes vs. 17 nodes of Big-M (lower bound = 15.08) 

Hull-Rel 

0 

ZL = 15.08 Big-M 

1 2 

4 3 

14 13 5 6 

8 12 11 16 15 7 

10* 9 

Y4 = 0 Y4 = 1 

Y6 = 0 Y6 = 1 

Y8 = 0 
Y8 = 1 

Y1 = 0 Y1 = 1 

Y8 = 0 Y8 = 1 

Y2 = 0 Y2 = 1 Y1 = 1 

Y3 = 0 Y3 = 1 
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Can we obtain stronger relaxations than  
with Hull-Relaxation? 

Question 

Extend Disjunctive Programming Theory 
to Nonlinear Convex Sets 

DP: Linear programming with disjunctions 

 Balas (1974, 1979, 1985, 1988) 
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Equivalence between GDP and DP 

GDP    DP 

The integrality of λ is guaranteed 

Proposition:  
Discrete/continuous GDP and continuous DP have equivalent solutions. 

Sawaya, Grossmann (2012) 

≥ 0    
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Equivalent Convex Disjunctive Programs 

Regular Form: Form represented by the intersection of the union of 
                           convex sets 

F is in regular form 

Balas (1985) 
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Illustrative Example: Basic Steps 
1 2 3F S S S= ∩ ∩

1 11 21( )S P P= ∪ 2 12 22( )S P P= ∪ 3 13 23( )S P P= ∪

12 11 12 11 22 21 12 21 22( ) ( ) ( ) ( )S P P P P P P P P= ∩ ∪ ∩ ∪ ∩ ∪ ∩

11 12 13 11 22 13 21 12 13 21 22 13
123

11 12 23 11 22 23 21 12 23 21 22 23

   ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
P P P P P P P P P P P P

S
P P P P P P P P P P P P

∩ ∩ ∪ ∩ ∩ ∪ ∩ ∩ ∪ ∩ ∩ 
=  ∪ ∩ ∩ ∪ ∩ ∩ ∪ ∩ ∩ ∪ ∩ ∩ 

Then F can be brought to DNF through 2 basic steps. 

which is its equivalent DNF  

1 2 3F S S S= ∩ ∩
We can then rewrite  

12 3as F S S= ∩

1 2 11 21 12 22( ) ( )S S P P P P∩ = ∪ ∩ ∪
Apply Basic Step to: 

12 3 11 12 11 22 21 12 21 22 13 23(( ) ( ) ( ) ( )) ( )S S P P P P P P P P P P∩ = ∩ ∪ ∩ ∪ ∩ ∪ ∩ ∩ ∪

Apply Basic Step to: 

12 3F S S= ∩ 123as F S=
We can then rewrite 
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P11 

P12 

P22 

Hierarchy of Relaxations for  
Convex Disjunctive Programs 

)()( 222112110 PPPPF ∪∩∪=Illustration: 

P21 
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P11 

P12 

P22 

Hierarchy of Relaxations for  
Convex Disjunctive Programs 

)()( 222112110 PPPPF ∪∩∪=Illustration: 

P21 

)( 2221 PPclconv ∪

)( 1211 PPclconv ∪
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Hierarchy of Relaxations for  
Convex Disjunctive Programs 

)()( 222112110 PPPPF ∪∩∪=Illustration: 

P11 

P12 

P21 

P22 

No Basic Step Applied => HR 

)( 0Frelh −
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Hierarchy of Relaxations for  
Convex Disjunctive Programs 

No Basic Step Applied => HR     Basic Step Applied 

)PP()PP()PP()PP(F 22122112221121111 ∩∪∩∪∩∪∩=)()( 222112110 PPPPF ∪∩∪=Illustration: 

P11 

P12 

P21 

P22 

)( 0Fclconv

P11 

P12 

P21 

P22 
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P11 

P12 

P21 

P22 

Hierarchy of Relaxations for  
Convex Disjunctive Programs 

    Basic Step Applied => CH 

Tighter relaxation! 

)()()()( 22212112221121111 PPPPPPPPF ∩∪∩∪∩∪∩=

No Basic Step Applied => HR 

)()( 222112110 PPPPF ∪∩∪=Illustration: 

P11 

P12 

P21 

P22 

)( 0Fclconv
)( 1Frelh −
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Convex nonlinear program equivalent to a 
convex disjunctive program 

  The solution of the 
NLP relaxation leads 
 to the solution of 
     the DP!  

NLPDP: 

Objective as 
constraint 

Similar to convexification of MILPs 
Lovacz & Schrijver (1989), Sherali & Adams (1990), Balas, Ceria, Cornuejols (1993) 
For DP/MINLP: Soares, Ceria (1999); Implicit in Stubbs and Mehrotra (1999) 
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Convex nonlinear program equivalent to a 
convex disjunctive program 

Illustrative Example 

Disjunctive Program 
Solution of the  
   relaxation 

Solution of the  
          DP 

Solution of the relaxed program is different from  
solution of the disjunctive program 
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Convex nonlinear program equivalent to a 
convex disjunctive program 

Illustrative Example 
Disjunctive Program 

Solution of the hull relaxation of DNF (NLP) is the  
same as the solution of the disjunctive program (Theorem 2.8) 

Solution of the program  
and its relaxation 

Place objective as constraint 
and intersect with disjunction 

Z = 1.172 
(3.293,1.707) 
 

x1 

x2 
DNF! 
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Summary of “practical” rules to apply basic steps  

• Apply basic steps between those disjunctions with at least one 
variable in common.  
 

• The more variables in common two disjunctions have the more the 
tightening expected. 
 

• A basic step between a half space and a disjunction with two disjuncts 
one of which is a point contained in the facet of the half space will not 
tighten the relaxation. 
 

• A smaller increase in the size of the formulation is expected when 
basic steps are applied between improper disjunctions and proper 
disjunctions.  
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No new binary 
variables are created 

(Balas, 1985) 

MINLP formulation of convex disjunctive 
program after several basic steps 

Set of disjunctions 
 after basic steps 

Set of disjunctions 
 before basic steps 

Constraints 
after basic steps 

No additional 0-1 variables are required! 
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1

2

6

7

4

3

5 8

x1

x4

x6

x21

x19

x13

x14

x11

x7

x8

x12

x15

x9

x16 x17

x25
x18

x10

x20

x23x22 x24x5

x3x2

A

B

: Unitj

Y1 ∨ Y2

Y6 ∨ Y7

Y4 ∨ Y5

C

D

F

E

Yi ∨ Yj

Specifications

1

2

6

7

4

3

5 8

x1

x4

x6

x21

x19

x13

x14

x11

x7

x8

x12

x15

x9

x16 x17

x25
x18

x10

x20

x23x22 x24x5

x3x2

A

B

: Unitj

Y1 ∨ Y2

Y6 ∨ Y7

Y4 ∨ Y5

C

D

F

E

Yi ∨ Yj

Specifications

We can obtain a tighter relaxation by applying basic steps 
between the improper disjunctions and the proper disjunctions  

Optimal Solution Zrel = 68.0097 obtained from Hull Relaxation with basic steps 

Solves as an NLP! 

Process Network Revisited 
                Illustrative Example 
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Sizes of Convex GDP Formulations 
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Numerical Results 

Table: Performance using different reformulation strategies 

Poor lower bounds 

All problems were solved using NLP branch-and-bound SBB/CONOPT 3.14 (GAMS) 
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Numerical Results 

Table: Performance using different reformulation strategies 

Improved lower  
bounds 50%probs 

All problems were solved using NLP branch-and-bound SBB/CONOPT 3.14 (GAMS) 
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Numerical Results 

Table: Performance using different reformulation strategies 

Improved lower  
bounds 100%probs 

All problems were solved using NLP branch-and-bound SBB/CONOPT 3.14 (GAMS) 

Proposed vs BM: faster 10 out of 12 
Proposed vs HR: faster 8 out of 12 



Cutting Planes for Linear 
Generalized Disjunctive Programming  

Min Z =         + hTx              Objective Function
     

s.t.   Bx ≤ b                          Common Constraints 
 
                 
       
 
   
  Ω(Y) = True                   Logic Constraints 

  x∈ Rn, Yjk∈ {True, False}, ck∈ R 

  j∈ Jk , k∈ K  

=

≤

jkk

jkjk

jk

c

axA

Y

γ

∨
∈ kJj

∑
∈Kk

kc

k ∈ K 

GDP Model:          

OR  
Operator 

Boolean  
Variables 

Disjunctive Constraints 

Sawaya, Grossmann (2004) 



Reformulations as MILP 

Min Z =                  + hTx

s.t. Bx ≤ b       

Ajk x - ajk ≤ Mjk (1-λjk)        j∈ Jk , k∈ K (BM)

= 1   k∈ K

Dλ ≤ d

x∈ Rn, λjk∈ {0,1} j∈ Jk , k∈ K

jk
Kk Jj

jk
k

λγ∑∑
∈ ∈

∑
∈ kJj

jkλ

Big-M parameters
Min Z =                  + hTx

s.t. Bx ≤ b       

Ajk x - ajk ≤ Mjk (1-λjk)        j∈ Jk , k∈ K (BM)

= 1   k∈ K

Dλ ≤ d

x∈ Rn, λjk∈ {0,1} j∈ Jk , k∈ K

jk
Kk Jj

jk
k

λγ∑∑
∈ ∈

∑
∈ kJj

jkλ

Big-M parameters

Big-M 

Min Z =                    + hTx

s.t. Bx ≤ b       
Ajk νjk - ajk λjk ≤ 0                        j∈ Jk , k∈ K

x = νjk k∈ K

0 ≤ νjk ≤ λjk Ujk j∈ Jk , k∈ K

= 1   k∈ K

Dλ ≤ d
x∈ Rn, νjk∈ Rn

+ , λjk∈ {0,1} j∈ Jk , k∈ K

jk
Kk Jj

jk
k

λγ∑∑
∈ ∈

∑
∈ kJj

jkλ

∑
∈ kJj

Disaggregated variables

Convex Hull (CH) 



Motivation for Cutting Plane Method 

 Proposition: The projected relaxation of (CH) onto the space of (BM) is 
always as tight or tighter than that of (BM)  (Grossmann I.E. , S. Lee, 2003) 

Trade-off: Big-M fewer vars/weaker relaxation vs Convex-Hull tighter relaxation/more vars 

Big-M 
Relaxed Feasible Region 

x2 

x1 
Convex Hull 

Relaxed Projected Feasible Region 

Strengthened Big-M 
Relaxed Feasible Region 

Cutting Plane 
(x - xSEP)T(xSEP - xR

BM) ≥ 0 

xSEP
 

xR
BM 



Cutting Plane Method  

 1. Solve relaxed Big-M MILP xR
BM 

 

  3. Cutting plane is generated and added to relaxed big-M MILP. 

4. Solve strengthened relaxed Big-M MILP. Go to 2.  

  2. Solve separation problem: find point xSEP closest to  xR
BM 

    Feasible region corresponds to relaxed Convex Hull.  
Min Z = Φ (x) (SEP)
s.t. Bx ≤ b       

Ajk νjk - ajk λjk ≤ 0        j∈ Jk , k∈ K

x = νjk k∈ K

0 ≤ νjk ≤ λjk Ujk j∈ Jk , k∈ K

= 1   k∈ K

Dλ ≤ d
x∈ Rn, νjk∈ Rn

+, 0 ≤ λjk ≤ 1  j∈ Jk , k∈ K

∑
∈ kJj

∑
∈ kJj

jkλ

Note: Φ (x) can be represented by either the Euclidean norm
(? x - xR

BM? ) (NLP) or the Infinity norm (maxixi-xiR
BM) (LP).

Min Z = Φ (x) (SEP)
s.t. Bx ≤ b       

Ajk νjk - ajk λjk ≤ 0        j∈ Jk , k∈ K

x = νjk k∈ K

0 ≤ νjk ≤ λjk Ujk j∈ Jk , k∈ K

= 1   k∈ K

Dλ ≤ d
x∈ Rn, νjk∈ Rn

+, 0 ≤ λjk ≤ 1  j∈ Jk , k∈ K

∑
∈ kJj

∑
∈ kJj

jkλ

Note: Φ (x) can be represented by either the Euclidean norm
(? x - xR

BM? ) (NLP) or the Infinity norm (maxixi-xiR
BM) (LP).



Proposition:      (1) Let Φ (z) ≡ ║z - zBM║2 ≡ (z – zBM)T(z – zBM). Then, 
                 ξ ≡ ∇ Φ = (z – zBM)  
 
 
 
 
       
 
 
 
 
 
 
 
 
 
 

            (3) Let Φ (z) ≡ ║z - zBM║1 ≡ Σzi - zi
BM. Then, 

                   ξ ≡ (µ+- µ-)  
   Min  Σ ui 
   s.t         ui ≥ zi - zi

BM    i ∈ I  
                ui ≥ -zi + zi

BM   i ∈ I  
                Feasible region of (SEP) 
 

Lagrange Multipliers 
µ+ 

µ- 

Cutting Plane Method: Different Cuts 

Proposition:      There exists a vector ξ such that 
    ξ T (zSEP – zBM) ≥ 0  
                            is a valid linear inequality, where ξ is a subgradient of Φ (z) at zSEP. 
      Note: z=(x,λ) 

            (2) Let Φ (z) ≡ ║z - zBM║∞≡ maxizi - zi
BM. Then, 

                   ξ ≡ (µ+- µ-)  
   Min u 
   s.t         u ≥ zi - zi

BM    i ∈ I  
                u ≥ -zi + zi

BM    i ∈ I  
                Feasible region of (SEP) 
 

Lagrange Multipliers 
µ+ 

µ- 



Problem statement: Hifi M. (1998) 
•  We need to fit a set of small rectangles with width wi and length li onto 

a large rectangular strip of fixed width W and unknown length L. The 
objective is to fit all small rectangles onto the strip without overlap and 
rotation while minimizing length L of the strip. 

y 

x L = ? 

W 

(0,0) 

Set of small rectangles 

i 
j j 

j i 

j 

(xi,yi) 

 Strip-packing Problem 



GDP Model For Strip-packing Problem 

Min Z = L (SP - GDP) 
s.t.  L  ≥ x i +  l i i ∈ N 

0  ≤ x i ≤ U i - l i i ∈ N 

h i ≤ y i ≤ W      i ∈ N 

x i ,  y i ∈ R i ∈ N 
Y 1 

ij , Y 2 
ij , Y 3 

ij , Y 4 
ij ∈ {True, False} i,j ∈ N,  i < j 

 
 

 
 
 

 
≤ + j i i 

ij 

x l x 
Y 

1 

 
 

 
 
 

 
≤ + i j j 

ij 

x l x 
Y 

2 

∨ ∨  
 

 
 
 

 
≥ − j i i 

ij 

y h y 
Y 

3 

 
 

 
 
 

 
≥ − i j j 

ij 

y h y 
Y 

4 

∨ 

i,j ∈ N,  i < j 

Min Z = L (SP - GDP) 
s.t.  L  ≥ x i +  l i i ∈ N 

0  ≤ x i ≤ U i - l i i ∈ N 

h i ≤ y i ≤ W      i ∈ N 

x i ,  y i ∈ R i ∈ N 
Y 1 

ij , Y 2 
ij , Y 3 

ij , Y 4 
ij ∈ {True, False} i,j ∈ N,  i < j 

 
 

 
 
 

 
≤ + j i i 

ij 

x l x 
Y 

1 

 
 

 
 
 

 
≤ + i j j 

ij 

x l x 
Y 

2 

∨ ∨  
 

 
 
 

 
≥ − j i i 

ij 

y h y 
Y 

3 

 
 

 
 
 

 
≥ − i j j 

ij 

y h y 
Y 

4 

∨ 

i,j ∈ N,  i < j 



21-rectangle Strip-packing Problem 

840 884 1072 Big-M 

840 4244 5272 Convex Hull 

Number of discrete 
variables 

Total number of 
variables 

Total number of 
constraints 

Problem Size 

2 

7 6 

10 

y 

x 

Optimal Length: 24 

1 

3 

8 

10 

11 

Solution 

9 

12 
13 

15 

14 16 17 

18 

19 20 21 

4 

5 



(CPLEX v. 8.1, default MIP options turned on)  

 

Relaxation Optimal 
Solution 

Gap 
(%) 

Total Nodes 
in MIP 

Solution Time 
for Cut 

Generation 
(sec) 

*Total 
Solution 

Time  (sec) 

Convex Hull 9.1786 --- --- 968 652 0 >10 800 

Big-M 9 24 62.5 1 416 137 0 4 093.39 

* Total solution time includes times for relaxed MIP(s) + LP(s) from separation problem + MIP  

Numerical Results 
 

Big-M + 20 cuts 9.1786   24 61.75     306 029     3.74          917.79  
Big-M + 40 cuts 9.1786   24 61.75     547 828     7.48       1 063.51  
Big-M + 60 cuts 9.1786   24 61.75       28 611    11.22           79.44  
Big-M + 62 cuts 9.1786   24 61.75       32 185    11.59            91.4   

Results also for retrofit, scheduling problems 
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- Global optimization techniques find 
the global optimum by sequentially 
approximating the non-convex problem 
with a convex relaxation  

Global  
Optimum 

- Tighter formulations lead to more 
efficient algorithms 

Convex 
Relaxation 

Tighter 
Relaxation Finding strong relaxations  

is a key element in  
1. Global Optimization 
2. Efficient solution 
of convex MINLP problems 

Lower 
Bound 

Global Optimization of MINLP 
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Nonconvex GDP 

Relaxation 
Under/over estimating functions 

Convex envelopes 

Strengthen relaxation 
Apply basic steps 

Phase 1 Phase 2 

Extension to Nonconvex GDP 

  

Remarks 
1. Since transformation to DNF impractical special 
      rules are applied to identify promising basic steps 
 

2. Stronger relaxation can also be used to infer tighter 
      bounds for variables 
 

 Convex GDP Tight Convex GDP 

Basic idea: strengthen lower bound of global optimum 

Initial lower bound Stronger lower bound 



66 
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X 0 1 

Demand 
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CpCP
XXX

XF
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UPLO
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 Min Z =   -qFX + gF + CP  
  

CP,X,F  
FLO ≤ F ≤ FUP  
Y11, ,Y21   {True, False} 

FX ≤ d 
 

Y11 ∨ Y21 = True 

 R ∈

∈

s.t. 

I 

II Conversion 

Feasible  
Region 

F: Flow 
X: Conversion 

Demand 
constraint 

Selection Reactor 

Objective 
Function 
(- Profit) 

Illustrative Example: Optimal reactor selection I 

GDP Formulation 

8 

Optimum Z* = -1.01 

A B 
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P ≤ d 
 

 Max Z =   qP - gF – CP  
  

F 

X 

8 

0 0 1 



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∈

 Min Z =   -qFX + gF + CP  
  

CP,X,F  
FLO ≤ F ≤ FUP  
Y11, ,Y21   {True, False} 

FX ≤ d 
 

Y11 ∨ Y21 = True 

 R 

s.t. 

P ≤ F.XLO + FUP.X - FUP.XLO  
P ≤ F.XUP + FLO.X – FLO.XUP 

P ≥ F.XLO + FLO.X – FLO.XLO 
P ≥ F.XUP + FUP.X – FUP.XUP 

s.t. 

    Relaxation 
(No Basic Steps) 

I 

II 

Bilinear Terms 

      Convex  
    Envelopes 

        Convex 
    Hull Relaxation 

Illustrative Example: Optimal reactor selection I 
Lee & Grossmann (2003) Relaxation 

Lower bound Z* = -1.28 < -1.01 
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Convex  
   Hull 
Relaxation 
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 Min Z =   -θFX + γF + CP  
  

CP,X,F  
FLO ≤ F ≤ FUP  
Y11, ,Y21   {True, False} 

Y11 ∨ Y21 = True 

 R 

s.t. 

P ≤ F.XLO + FUP.X - FUP.XLO  
P ≤ F.XUP + FLO.X – FLO.XUP 

P ≥ F.XLO + FLO.X – FLO.XLO 
P ≥ F.XUP + FUP.X – FUP.XUP 

s.t. 

∨

    Relaxation 
  (Basic Steps) 

I 

II 

Bilinear Terms 

      Convex  
    Envelopes 

Basic  
Step 

Illustrative Example: Optimal reactor selection I 
Proposed Relaxation 

Lower bound Z* = -1.1 < -1.01 and tighter than -1.28! 
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Dimensions of Test Problems 
Bilinear/Concave 

  Bilinear Terms Concave Functions Discrete Variables Continuous Variables 

Example 1 1 0 2 3 

Example 2 0 2 2 5 

Example 3 4 9 9 8 

Example 4 36 0 9 114 

Example 5 24 0 9 76 

1- Optimal Reactor selection  I 
2- Optimal Reactor selection II 
3- HEN with investment cost - multiple size Regions (Turkay & Grossmann, 1996) 
4- Water Treatment Network Design problem (Galan & Grossmann, 1998) 
5- Pooling Network Design problem (Lee & Grossmann, 2003) 

Examples 

Strong linear relaxations exist for bilinear and concave functions  
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Dimension of Case Studies 
Linear Fractional, Posynomial, Exponential 

  Cont. Vars. Boolean Vars. Logic Const. Disj. Const. Global Const. 

   PROC1 5 2 1 1 3 

   PROC2 5 2 1 1 3 

   RXN1 4 2 1 1 6 

   RXN2 4 2 1 1 6 

   HEN1 18 2 2 2 21 

PROC1, PROC2 :   Optimal Process Network Problem 
RXN1, RXN2 :   Optimal Reactor Network Problem 
HEN1 :   Optimal Heat Exchanger Network Problem 

Reference 

Strong nonlinear relaxations exist for linear fractional and  
                           posynomial functions  
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Heat Exchanger Network Generalized Disjunctive Program 

Heat Exchanger Network Problem 

Linear Fractional Terms  
in constraints 
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Global 
Optimum 

Lower Bound 
Hull Relaxation 

Lower Bound 
Basic Steps 

DNF 
Lower 
Bound 

React 1 -1.01 -1.28 -1.10 -1.10 

React 2 6.31 5.65 6.08 6.08 

HEN 114384.78 91671.18 94925.77 97858.86 

Water 1214.87 400.66 431.90 431.90 

Pool -4640 -5515 -5468 -5241 

Process 1 18.61 11.85 16.01 16.01 

Process 2 19.48 12.38 17.07 17.07 

RXN 1  42.89 -337.5 -320.0 -320.0 

RXN 2 76.47 22.5 40.0 40.0 

HEN 1 48531 38729.3 48230 48531 

Prediction of Lower Bounds Global Optimum 

Bilinear 
Concave 

Linear  
Fractional, 
Posynomial, 
Exponential 

Lower bounds improved in all cases    Ave. increase  22% 

8 out of 10 achieved theoretically best lower bound (DNF)! 
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Global Optimization Methodology  

GDP reformulation 
Apply basic steps following 

the rules presented 

Bound Contraction 
(Zamora & Grossmann, 1999) 

Spatial Branch and Bound 
(Lee & Grossmann, 2001) 

Yj ¬Yj 

Disjunctive B&B 

  

Spatial B&B 

Feasible discrete 
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Computational Performance- Bilinear/Concave 

Remarks 
-Proposed relaxation led to a significant bound contraction at the root node. 
- 44% reduction number of nodes, 23% reduction CPU time  
   tighter relaxation but increased size of proposed relaxation 

Global Optimization Technique 
using Hull Relaxation 

Global Optimization Technique 
using Proposed Relaxation 

Global 
Optimum Nodes  

Bound 
contract. (% 

Avg) 
CPU Time 

(sec) Nodes  

Bound 
contract. (% 

Avg) 
CPU Time 

(sec) 

Example 1 -1.01 5 35 2.1 1 38 1.4 

Example 2 6.31 1 33 1.0 1 33 1.0 

Example 3 114384.78 13 85 11.0 1 99 6.0 

Example 4 1214.87 450 8 217 227 16 139 

Example 5 -4640 502 1 268 497 1 285 

Size of the LP Relaxation  
(Hull Relaxation) 

Size of the LP Relaxation  
(Proposed) 

Constraints Variables Constraints Variables 

Example 1 23 15 28 15 

Example 2 24 14 31 18 

Example 3 87 52 206 106 

Example 4 544 346 3424 1210 

Example 5 3336 1777 4237 1777 
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Extended Mathematical Programming  
(GAMS-EMP) syntax (big-M or HR) 

Syntax 1: All default = (HR) Example 

Z*

x1

x2 variables x1,x2,z; 
 
equation obj, f1, f2, f3; 
 
obj.. z =e= sqr(x1-5) + sqr(x2-5); 
f1.. sqr(x1) + sqr(x2) =l= 1; 
f2.. sqr(x1-4) + sqr(x2-1) =l= 1; 
f3.. sqr(x1-2) + sqr(x2-4) =l= 1; 
 
x1.lo = -5; x2.lo = -5; x1.up = 5; x2.up = 5; 
 
model circles /all/; 
 
file emp / '%emp.info%' / 
 
put emp / "disjunction * " f1 
           / "elseif * " f2 
           / "else " f3; 
 
putclose emp; 
 
solve circles using emp min z; 

Model definition: 
variables and 

equations 

Writes EMP model, 

Write disjunctions: 
First term: “disjunction” 

Last term: “else” 
All others: “elseif” 

 
Equations not written 

here are global 
 

Binary variables are 
automatically assigned 

Finish writing emp 
model and solve 

Software Implementation GDP 



76 

Eliminate infeasible disj. terms 

Select “Key Disjunction” (DK) 
Characterize 
the problem 

Select Disjunction D* to apply BS 

Apply BS between D* and DK 

Eliminate infeasible terms 

Set resulting disjunction as DK 

Rule 

Iteratively 
apply BS 

and 
feasibility 

check 

Apply improper BS with DK 

Hybrid reformulation: DK as HR and 
the remaining disjunctions as BM 

Formulate 
Hybrid 

Big-M / HR 

Algorithm 

Reformulation algorithm from GDP to MI(N)LP 
  

         Algorithm consists of 3 stages 

(Trespalacios, Grossmann, 2013) 



Reduction of terms through a preprocessing 
Preprocessing allows us to reduce problem size and identify better bounds 
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Preprocess: HR when each 
disjunctive term is TRUE 

True 

Hull Reformulation 
Relaxation 

Characteristic value 
of each disjunction 

Min obj 

Infeasible, 
eliminate term 

9.5 

8.5 

True 

9.5 

True 

10.0 

Lower 
bound 

Solution: 9.5 
(BM) lower bound: 4.0 
(HR) lower bound: 8.5 

After preprocessing 

We eliminate one disjunctive term and obtain a stronger 
lower bound! 



With hybrid GDP reformulation it is possible to exploit 
advantages of Hull-R and Big-M 
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x1 

x2 

Maximization example Different reformulations 

Big-M 

H-Ref 

Hybrid 

Z* 

x1 

x2 

x1 

x2 

x1 

x2 

Variables: 6 
(4 binary) 
Constraints: 18 

ZBM 

ZHR 

Variables: 14 
(4 binary) 
Constraints: 36 

ZHY Variables: 10 
(4 binary) 
Constraints: 28 

Z=4 

Z=5 

Z=6 

Z=7 

Z=8 

BM of [A] 

HR of [B] 



Eliminate infeasible disj. terms 

Select “Key Disjunction” (DK) 
Characterize 
the problem 

Select Disjunction D* to apply BS 

Apply BS between D* and DK 

Eliminate infeasible terms 

Set resulting disjunction as DK 

Rule 

Iteratively 
apply BS 

and 
feasibility 

check 

Apply improper BS with DK 

Hybrid reformulation: DK as HR and 
the remaining disjunctions as BM 

Formulate 
Hybrid 

Big-M / HR 

Algorithm 

Solution: 15.0 
HR lower bound: 8.3 
Big-M lower bound: 6.0 

Algorithm lower bound: 15.0 

Example (Ex5) 

Illustration 3 stages of Algorithm 
GDP example shows the application of these, and improvement in relaxation 

[Rule]. In this example: H-Ref improves after 2 BS, then continue iterating, 
else stop. Other rules, such as limiting the # of terms could be used 
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Same as optimal 
solution! 



1: Balas E., Disjunctive Programming and a hierarchy of relaxations for discrete optimization problems, SIAM J. Alg. Disc. Meth., 6, 466-486, 1985 

Selection of DK and D* is based on three key concepts 
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Consequence 
of Theorem 

4.51 

Growth in 
proper basic 

step 

Characteristic 
value of 

disjunctions 
(Pre-analysis) 

A Basic Step between two disjunctions that do not share variables in 
common will not improve the tightness of the formulation 

# of terms in resulting disjunction = (# of terms in D1)*(# of terms in D2) 
 
If we are applying several BS over the same disjunction this growth is even 
more important 

The disjunction with highest characteristic value is expected to provide 
tightest relaxation when the Basic Step is applied 



Algorithm was tested with several convex problems (I/III) 
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MILP: Strip packing (Stpck) 

Minimize length 

1 2 4 

5 8 6 7 

10 11 12 9 

3 

MILP: Nontransitive dice (Dice) 

No rotation 

1 

9 

10 

11 

14 12 

5 

6 

7 

8 

18 13 

2 

3 

4 

15 

17 16 

n = 1 n = 2 n = 3 

• Dice 1 beats dice 2 in 21 of 36 possible outcomes 
• Dice 2 beats dice 3 in 21 of 36 possible outcomes 
• Dice 3 beats dice 21in 21 of 36 possible outcomes 



Algorithm was tested with several convex problems (II/III) 
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MINLP: Farm Layout (Flay) MINLP: Constrained Layout (Clay) 

A1 = 40 m2 

A2 = 50 m2 
A3 = 60 m2 
A4 = 35 m2 

A1 

A2 A3 

A4 

y 

x 

y 

x 

1 

2 
3 

4 

5 6 



Algorithm was tested with several convex problems (III/III) 
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MINLP: Multiproduct batch (batch) MINLP: Process flowsheet (Proc) 

x21

x19

1

2

4

5

3

6

7

x1

x4

x2

x5

x3

x6

x7

x8 x9

8

x25
x16 x17 x18

x14

x12

x11

x15

x20

x22
x13

x10

x23

x24

proc8: 

Non linear term 

Unit 1 
V = ? 

Unit 2? 
V = ? 

… 

Unit n? 
V = ? 

Stage j 

Intermediate 
storage 
tank? 
V=? 

Unit 1 
V = ? 

Unit 2? 
V = ? 

… 

Unit n? 
V = ? 

Stage j+1 



Note: MINLP problems solved with SBB/CONOPT. MILP solved with Gurobi (Pre-solve and cuts deactivated in 
solver for comparison purpose), in a 2.93 GHz Processor, Intel® Core™ i7. 4GB of RAM.  

Results: The algorithm solves GDP generally faster for 
the 36 instances in which it was tested 
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In larger instances the algorithm generally 
performs better than (BM) and (HR) In smaller instances the presolve can take as 

much time as solving the MINLP, so the 
algorithm is slower than direct (BM) or (HR) 



Note: MINLP problems solved with SBB/CONOPT. MILP solved with Gurobi (Pre-solve and cuts deactivated in 
solver for comparison purpose), in a 2.93 GHz Processor, Intel® Core™ i7. 4GB of RAM.  

Results: MINLP after algorithm provides stronger 
relaxations 
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Note: MINLP problems solved with SBB/CONOPT. MILP solved with Gurobi (Pre-solve and cuts deactivated in 
solver for comparison purpose), in a 2.93 GHz Processor, Intel® Core™ i7. 4GB of RAM.  

Results: MINLP size generally smaller than (HR) 
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In larger instances the algorithm 
tends to generate smaller MINLPs 

In smaller instances the 
algorithm and (HR) have 

similar problem sizes 
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Conclusions 

-Proposed an extension of  disjunctive programming theory to nonlinear 
 convex sets that yields hierarchy of relaxations (concept basic steps) 

-Tightest of these relaxations allows in theory the solution of the DP 
  as an convex NLP 

- Applied the proposed framework to several instance obtaining  
 significant improvements in the performance (tighter lower bounds) 

- Proposed framework can be applied to nonconvex GDP problems 
  yielding tighter lower bounds on global optimum (bilinear, concave,  
  linear fractional) and can be extended to nonlinear convex envelopes 

-Work currently underway to automate reformulation of convex  
  GDP problems into MI(N)LP using concept basic steps 
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